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TECHNICALMEMORANDUM

TIME-TEMPERATURE-PRECIPITATION BEHAVIOR IN AL-LI ALLOY 2195

1. INTRODUCTION

Transmission electron microscopy (TEM) was used to study time-temperature-precipitation

(TTP) behavior in aluminum-lithium (A1-Li) 2195 alloy. A1-Li 2195 (nominally A1 + 4 percent Cu

+ 1 percent Li + 0.3 percent Ag + 0.3 percent Mg + 0.1 percent Zr) was initially solutionized for 1 hr

at 950 °F and then stretched 3 percent. Heat treatments were conducted for up to 100 hr at temperatures

ranging from 200 to 1,000 °F. TTP diagrams were determined for both matrix and subgrain boundaries.

Depending upon heat treatment conditions, precipitate phases (such as Guinier-Preston (GP) zone, 0",

0', 0, 8', T 1, TB, and T2) were found in the alloy. The TTP diagrams were applied as a guide to avoid T1

precipitation at subgrain boundaries, as part of an effort to improve the alloy's cryogenic fracture

toughness (CFT). New understanding of TTP behavior was instrumental in the development of a

two-step (TS) artificial aging treatment that significantly enhances CFT in A1-Li 2195.



2. TECHNICAL APPROACH

Due to its low density, high modulus, and good cryogenic properties, A1-Li 2195 was selected as

the main structural alloy for the Space Shuttle's external super lightweight tank (SLWT). 1,2 A1-Li 2195

has significantly higher strength than conventional 2xxx alloys (such as A1 2219) at both ambient and

cryogenic temperatures, and it can be strengthened further through the use of an aging treatment that

precipitates the primary strengthening precipitate T 1 (A12CuLi). Other phases (such as GP zone, 0",

0', 0, and 8') axe present after the alloy is artificially aged. Some work has been done on the precipitation

characteristics of T 1 in order to optimize materials strength and fracture toughness. 3 However, no

systematic study on TTP behavior had previously been undertaken.

TTP behavior was studied at temperatures <400 °F, in part because a recent study 1,2 had

indicated that CFT is related to the density, size, and location of T 1. CFT decreases considerably as T 1

increases in density at the subgrain boundaries, but such precipitation could perhaps be minimized by an

advanced aging treatment based upon a better understanding of TTP behavior in A1-Li 2195. TTP was

also studied at higher temperatures, due to the importance of alloy properties in the heat-affected zone

(HAZ), which is subjected to thermal cycles during weld repair. Since any additional thermal cycles will

affect precipitate stability and transformation of the structural alloy, TTP diagrams must be available for

comparison to welded microstructures in order to understand the thermal history of each SLWT.

This study was conducted to develop TTP diagrams for solution-treated and stretched A1-Li 2195,

which will allow its precipitation reactions to be predicted at any aging temperature. Such diagrams will

serve as a guide to optimize the alloy's mechanical properties by varying heat treatment parameters. This

understanding will assist in the development of welding parameters to further improve the mechanical

properties of A1-Li 2195 for use in SLWT applications.
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3. EXPERIMENTAL PROCEDURES

3.1 Processing

The alloy (nominally A1-4.19Cu-0.95Li-0.29Mg-0.31Ag-0.12Zr) used in this study was processed

by Reynolds and supplied in the form of 1.7-in-thick rolled plates. Rolling was conducted on an initial

ingot thickness of =13 in, in the temperature range of 700 to 800 °E The plates were then given a

solutionizing treatment for 1 hr at 950 °F and then stretched 3 percent at ambient temperature. After

stretching, the specimens were heat treated in the time-temperature envelope of 0.1 to 100 hr at 200

to 1,000 °F (see fig. 1). After heat treatment, hardness was measured for each specimen using the

Rockwell hardness B scale (HRB).
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Figure 1. Heat-treatment matrix for solution-treated A1-Li 2195.

3.2 Microstructural Characterization

Specimens were sliced from the plates and mechanically ground to the desired thickness for

microstructural examination, which was carded out using a JEOL, Ltd. 2000F transmission electron

microscope operated at 200 kV. Samples were twinjet electropolished to perforation at-20 °F and 12 V

in an electrolyte of 30-percent nitric acid in methanol. Precipitates were examined by the combined use

of selected area diffraction and bright field/daxk field techniques. Matrix and subgrain boundary

precipitates were examined using an electron beam direction near the [110]matri x zone axis.



4. RESULTS AND DISCUSSION

The A1-Li 2195 plate had a predominantly unrecrystallized microstmcture, with coarse and

pancake-shaped grains elongated along the rolling direction. The as-solution-treated and stretched

microstructure primarily contained GP zone (localized concentrations of Cu atoms) due to natural

aging, 5 but was free of other secondary phases. Depending on heat-treatment conditions, the solution-

treated material can decompose and precipitate via several different reactions. Therefore, hardness can

vary as a function of heat-treatment conditions (see fig. 2).
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Figure 2. Hardness variations as a function of heat-treatment conditions.

4.1 GP Zone, t)" (AI2Cu), and g' (AI3Zr)

GP zone, 0", and 8' were the primary precipitate phases at 200 and 250 °F. During early stages

of heat treatment (<500 °F), reversion caused a sharp decrease in hardness 5 associated with some

dissolution of GP zones and 8'. At 200 and 250 °F, the matrix microstmcture consisted of primary

entangled dislocations and dispersed 8' particles. No sign of T 1 nucleation was found under these

conditions (see fig. 3). After longer heat treatment at 250 oF, a slight increase in hardness was noted,

due to continual growth of 0".
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Figure3.Matrixconsistingof entangleddislocationsanddispersed8' particles
afteragingat200°F/1hr (dissolvedGP zone and 0" due to reversion).

4.2 T 1 (AI2CuLi)

T 1 was the predominant precipitate at temperatures ranging from 280 to 500 °E With its plate-shaped

morphology, T 1 is the primary phase responsible for the increased hardness at temperatures <500 °F. It

has a very strong tendency to nucleate at subgrain boundaries and grow very rapidly there (see fig. 4) in

the same temperature range as T 1 formed in the matrix. However, subgrain T 1 is usually thicker, shorter,

and has a smaller diameter than matrix T1. Only when the habit plane of T 1 was nearly parallel to the

subgrain boundary plane did the precipitate grow very long (see fig. 5). In the matrix, T 1 grew contin-

uously at the expense of GP zones, 0', and 0". Exposure for a short time (6 min) at 350 and 400 °F led to

abundant nucleation and significant coarsening of T 1 (see fig. 6).

Figure 4. T 1 nucleation occurring preferentially at subgrain boundaries at 300 oF.



(a)At 350°F/0.1hr (b)At 400°F/0.1hr

Figure5. (a)SubgrainboundaryT1, which grew longer and thicker than matrix T1,

and (b) significant occurrence of nucleation and growth of Tp

4.3 0" (AI2Cu) and 0 (AI2Cu)

In the early stages of heat treatment at elevated temperatures (600 to 700 °F), 0' became the

dominant precipitate (see fig. 6). Prolonged exposure at 700 °F led to the precipitation of equilibrium

phases 0 in the matrix and grain boundaries. Above 800 °F, the formation of incoherent 0 accompanied

the recovery and recrystallization processes, as evidenced by increased dislocation pileup and grain

growth. At 800 oF, 0' nucleation diminished significantly (see fig. 7).

Figure 6. Microstructure primarily consisting of matrix 0' and

grain boundary 0 after heat treatment at 700 °F/1 hr.



Figure7.0' nucleationdiminishingsignificantlyat800°F.

4.4 T2 (AIsLi3Cu) and T B (AI7.sLiCu4)

0', 0, T2, and TB formed in the matrix and subgrain boundaries after 10 hr at 700 and 800 oF.

Prolonged exposure at 800 °F led to the precipitation of equilibrium phases TB (primarily in the matrix

and grain boundaries) and T2 (primarily at grain boundaries). TB precipitated in the matrix and appeared

to grow at the expense of 0' and 0, whereas T2 led to continuous grain boundary coverage by coexisting

with 0 at grain boundaries (see fig. 8).

Figure 8. T2 and T B forming at 800 °F/0.1 hr.
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At temperatures>600°F,asignificantdropin hardnessoccurred,whichcanbeexplainedby
insufficientnucleationof T 1 and precipitation of incoherent equilibrium phases 0, T B, and T2. The

number of subgrains also diminished due to extensive recovery and early stage of recrystallization. At

temperatures >900 oF, more significant recrystallization and grain growth occurred, creating a micro-

structure essentially devoid of any strengthening precipitates in both the matrix and grain boundaries.

4.5 Time-Temperature-Precipitation Diagrams

The TTP diagrams consisted of C-curves for T1, 0', 0", 0, T2, and TB in the matrix and T1, 0',

0, T2, and TB at subgrain boundaries (see fig. 9). The phase boundaries (estimated by curve-fitting
approach from TEM observation of the experimental samples) axe given only for the start of each

precipitation, and completion curves were not determined. Therefore, the region to the right of a curve

represents the time-temperature envelope for which that phase was present in the microstructure after
heat treatment.

1,000

9OO

800

700

i 600
500

400

300

200

lOO

i i iiiiii I i i iiiiii I i i iiiiii I i i iiiiii I i i i
1,000 ........ i ........ i ........ i ........ i ' ' '

1_. O'

\
.

"_kS, GPZonee ....
I I IIIIIll I I IIIIIll I I IIIIIll I I IIIIIll I

10-2 10-1 100 101 102

Time(hr)

900

800

A 700

600
500

400

300

200

100

10-2

. i

, , ,,,,,,I , , ,,,,,,I , , ,,,,,,I , , ,,,,,,I

10-1 100 101 102

Time(hr)

i i i

(a) Matrix (b) Subgrain boundaries

Figure 9. TTP diagrams for A1-Li 2195.

A very short but finite nucleation time (<6 min) exists for the onset of T 1 precipitation. In most

cases, subgrain boundaries axe favorable nucleation sites for T1 at temperatures ranging from =280 to

500 °F. Nucleation of T1 is very rapid and, once nucleated, subgrain boundary T 1 always grows faster

than matrix T 1. The only ways found to avoid preferential T1 precipitation at subgrain boundaries were

to age the material <280 °F (the temperature at which T 1 forms) or enhance T 1 nucleation and growth in

the matrix so that Tl-forming elements (such as Li and Cu) became depleted at subgrain boundaries.

Caution should be exercised when using TTP diagrams for A1-Li 2195, since the energy state

(e.g., grain size, hot working history, solution treatment temperature, degree of stretch) can shift

relationships to the left or right. The commercial solution heat treatment commonly used for A1-Li 2195

(950 °F) would be expected to result in complete dissolution of all phases.



Althoughprecipitationbehaviormaybeaffectedby compositionvariationsfromheatto heat,
theseTTPdiagramscanbeusedasaguideto selectappropriateheattreatmentsfor differentservice
applications.If highstrengthandhighfracturetoughnessaxeneeded,thenagingtreatmentsshouldbe
selectedfromdiagramswhichprecipitatemaximummatrixT 1 for strength while avoiding or minimizing

precipitation of subgrain boundary Tp

CFT and cryogenic strength axe considered critical for the SLWT (which houses liquid oxygen

and liquid hydrogen), as is the need for higher strength and fracture toughness at cryogenic temperatures

than at ambient temperature (in order to avoid expensive cryogenic proof testing). Unfortunately, some

commercial 2195 material was disqualified from the SLWT program when it exhibited unexpectedly low

CFT which proved to be related to the density, size, and location of T 1.1,2 Attempts were made to

improve the fracture toughness of such material by reducing subgrain boundary T 1 while enhancing the

nucleation of matrix T1, based on the observation that CFT decreases considerably as T 1 increases in

density at the subgrain boundaries.

Since the TTP diagrams indicate that T 1 nucleation and growth can be controlled by avoiding

temperature ranges that activate nucleation, a TS aging treatment was developed to enhance CFT. 4 The

initial aging sequence (20 hr at 270 °F) promotes 0" and T 1 nucleation and growth in the matrix, while

reducing T 1 nucleation at subgrain boundaries (see fig. 10). T 1 will eventually nucleate at subgrain

boundaries and start to grow as aging continues (45 hr at 280 °F). However, the TS aging treatment

allows T 1 to precipitate and grow in the matrix before it can develop in the subgrain boundaries. The

early coarsening of matrix T 1 greatly reduces the concentration of Cu and Li in the matrix and thus

hinders the growth of subgraJn boundary T1 in a diluted Al-Cu-Li solid solution. The higher temperatures

used in conventional aging (32 hr at 290 °F) are not encountered during TS aging, which helps to

constrain T 1 nucleation and growth at subgrain boundaries. As a result, a TS-aged specimen has a

significantly different microstructure from that of a conventionally aged specimen (see fig. 11). Tests

have indicated that TS aging can enhance CFT by as much as 30 percent (see fig. 12).

Figure 10. Enhanced 0" and T1 nucleation in the matrix (rather

than at subgrain boundaries) during the first step of

TS aging (270 °F/20 hr).
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(a) (b)

Figure 11. (a) No T 1 precipitation seen at subgrain boundaries after TS aging as

compared to (b) preferential T 1 precipitation seen at subgrain boundaries

after conventional aging.
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Figure 12. Significantly enhanced CFT of A1-Li 2195 after TS aging.
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5. SUMMARY

1. TTP diagrams were determined for A1-Li 2195. They consisted of six separate C-curves for the

matrix and four C-curves for the subgrain boundaries.

2. T 1 was the primary strengthening phase at temperatures <500 °F.

. At temperatures <600 °F, T 1 was the only phase present at the subgrain boundaries. At temperatures

between 300 and 500 oF, initial nucleation of T 1 occurred preferentially at the subgrain boundaries,

with more T 1 growth seen there than in the matrix.

. At temperatures >600 oF, 0', 0, T 2, and TB formed at the subgrain boundaries and in the matrix.

Prolonged exposure at 800 °F resulted in the precipitation of equilibrium phases TB and T2.

Apparently, TB grew at the expense of 0' and 0, whereas T2 coexisted with 0 at the grain boundaries

(which led to continuous grain boundary coverage).

. At temperatures >600 oF, a significant drop in hardness occurred, which can be explained by

insufficient nucleation of T 1 and precipitation of incoherent equilibrium phases 0, TB, and T 2. At

temperatures >900 °F, significant recrystallization and grain growth resulted in a microstructure

that was essentially devoid of any strengthening precipitates.

. This study developed TTP diagrams which were instrumental in the development of an advanced

aging treatment for A1-Li 2195 that is now being used in the SLWT program. This aging treatment

has proved to be capable of improving the size, distribution, and density of T 1 in A1-Li 2195 and

hence improving the alloy's CFT by up to 30 percent.
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